シラバス参照

授業情報/Class Information

科目一覧へ戻る 2025/05/07 現在

基本情報/Basic Information

開講科目名
/Class
経済数学Ⅱ/Mathematics for Economic Analysis Ⅱ
授業コード
/Class Code
B301031001
ナンバリングコード
/Numbering Code
ECOc105
開講キャンパス
/Campus
有瀬
開講所属
/Course
経済学部/Economics
年度
/Year
2025年度/Academic Year  
開講区分
/Semester
後期/AUTUMN
曜日・時限
/Day, Period
水1(後期)/WED1(AUT.)
単位数
/Credits
2.0
主担当教員
/Main Instructor
安逹 啓介/ADACHI KEISUKE
遠隔授業
/Remote lecture
No

担当教員情報/Instructor Information

教員名
/Instructor
教員所属名
/Affiliation
安逹 啓介/ADACHI KEISUKE 経済学部/Economics
授業の方法
/Class Format
講義
授業の目的
/Class Purpose
本科目では,DP(学位授与方針)の「3. 経済データに関する基礎的知識を修得し,統計的な処理・分析ができ,政策課題に対応できる」ため,物事を理論的に理解する思考力を身に付けることを目指します.

本科目は,専門教育科目の選択必修科目における専門リテラシー科目に属する科目です.
経済学を学ぶ上で必要となる基礎的な数学知識について学習します.高校までに学習した基礎数学の内容を再確認するとともに,数学が経済学でどのように利用されているのかを知ることを目的とします.
到 達 目 標
/Class Objectives
1.経済学を学ぶ際に必要な数学の基礎知識について説明できる.
2.経済学で数学がどのように利用されているかを理解できる.
3.公務員試験や就職試験の問題を解くことができる.
授業のキーワード
/Keywords
指数と対数,偏微分と最適化
授業の進め方
/Method of Instruction
講義中心の授業です.まず,テキストにしたがい,[POINT]を説明した後,[例題]を提示します.次に,各自で問題をテキストに書き込みながら解いてもらいます.
履修するにあたって
/Instruction to Students
履修要件は特にありませんが、高校数学Ⅰ・Ⅱの知識があると、理解が捗ります。
授業時間外に必要な学修内容・時間
/Required Work and Hours outside of the Class
毎回,1時間程度の予習と1時間以上の復習が必要です.特に,これまでに学習していない内容は時間をかけて復習しましょう.
提出課題など
/Quiz,Report,etc
講義時に,計算問題などのレポートを出題します.課題レポートの解説は、授業時間に行います.
成績評価方法・基準
/Grading Method・Criteria
中間試験(40%),定期試験(40%)と課題レポート(20%)により評価します.
テキスト
/Required Texts
白石俊輔,(尾山大輔,安田洋祐監修),『経済学で出る数学 ワークブックでじっくり攻める』,日本評論社
必ず,テキストを持参してください.
参考図書
/Reference Books
塩出省吾,上野信行,柴田淳子,中村光宏,『社会科学系学生のための基礎数学』,共立出版
柴田淳子,奥原浩之,『経営・経済を学ぶ学生のための基礎数学』,共立出版
No.
/Time
主題と位置付け
/Subjects and position in the whole class
学習方法と内容
/Methods and contents
備考
/Notes
1 第1回 ガイダンス,指数・対数と金利(1) 複利計算(1)
2 第2回 指数・対数と金利(2) 累乗の計算と指数法則
3 第3回 指数・対数と金利(3) 割引現在価値,複利計算(2)
4 第4回 指数・対数と金利(4) 対数の計算
5 第5回 指数・対数と金利(5) 常用対数,自然対数と連続時間での利子率・割引率
6 第6回 前半のまとめ 復習
7 第7回 中間試験 前半の内容に関する試験
8 第8回 数列と貯蓄(1) 数列
9 第9回 数列と貯蓄(2) 数列の極限
10 第10回 数列と貯蓄(3) 数列の和
11 第11回 1変数関数の微分と利潤最大化(1) よく出る関数と微分公式
12 第12回 1変数関数の微分と利潤最大化(2) 利潤最大化
13 第13回 多変数関数の微分と効用最大化(1) 多変数関数の微分
14 第14回 多変数関数の微分と効用最大化(2) 偏微分
15 第15回 後半のまとめ 復習

科目一覧へ戻る